1. Книги
  2. Программирование
  3. Джейд Картер

120 практических задач

Джейд Картер (2024)
Обложка книги

В книге представлены 120 задачч из различных областей, включая анализ данных, прогнозирование, классификацию, распознавание образов и другие. В каждой задаче рассматривается использование глубокого обучения и нейронных сетей для решения, включая выбор архитектуры модели, подготовку данных, обучение и оценку результатов. Примеры кода на Python помогают читателям легко освоить материал и применить его на практике.Книга предназначена для специалистов в области данных, исследователей, студентов и всех, кто интересуется применением современных методов глубокого обучения для решения разнообразных задач в науке, технологиях и бизнесе.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «120 практических задач» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

14. Обнаружение аномалий в данных с помощью автоэнкодера

Задача: Поиск аномалий в финансовых транзакциях

Обнаружение аномалий в данных с использованием автоэнкодера — это мощный подход, особенно в задачах, где необходимо выявлять необычные или подозрительные образцы в данных, таких как финансовые транзакции. Автоэнкодеры используются для создания моделей, которые могут восстанавливать нормальные (обычные) образцы данных, и при этом выделять аномальные, не типичные образцы.

Построение автоэнкодера для обнаружения аномалий в финансовых транзакциях

1. Подготовка данных

Прежде всего необходимо подготовить данные:

— Загрузить и предобработать данные финансовых транзакций.

— Нормализовать данные для улучшения производительности обучения модели.

— Разделить данные на обучающую и тестовую выборки.

2. Построение модели автоэнкодера

Рассмотрим архитектуру автоэнкодера, который может быть использован для обнаружения аномалий в финансовых транзакциях:

— Энкодер: Преобразует входные данные в скрытое представление меньшей размерности.

— Декодер: Восстанавливает данные из скрытого представления обратно в оригинальные данные.

Пример архитектуры нейронной сети для автоэнкодера:

```python

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense

# Пример архитектуры автоэнкодера для обнаружения аномалий в финансовых транзакциях

# Подготовка данных (вымышленный пример)

# X_train — обучающие данные, X_test — тестовые данные

# Данные предварительно должны быть нормализованы

input_dim = X_train.shape[1] # размер входных данных

# Энкодер

input_layer = Input(shape=(input_dim,))

encoded = Dense(32, activation='relu')(input_layer)

encoded = Dense(16, activation='relu')(encoded)

# Декодер

decoded = Dense(32, activation='relu')(encoded)

decoded = Dense(input_dim, activation='sigmoid')(decoded)

# Модель автоэнкодера

autoencoder = Model(input_layer, decoded)

# Компиляция модели

autoencoder.compile(optimizer='adam', loss='mse')

# Обучение модели на обычных (нормальных) образцах

autoencoder.fit(X_train, X_train,

epochs=50,

batch_size=128,

shuffle=True,

validation_data=(X_test, X_test))

# Использование автоэнкодера для предсказания на тестовых данных

predicted = autoencoder.predict(X_test)

# Рассчитываем ошибку реконструкции для каждого образца

mse = np.mean(np.power(X_test — predicted, 2), axis=1)

# Определение порога для обнаружения аномалий

threshold = np.percentile(mse, 95) # например, выбираем 95-й процентиль

# Обнаружение аномалий

anomalies = X_test[mse > threshold]

# Вывод аномалий или дальнейшее их анализ

print(f"Найдено {len(anomalies)} аномалий в данных.")

```

Пояснение архитектуры и процесса:

1. Архитектура автоэнкодера: Модель состоит из двух частей: энкодера и декодера. Энкодер уменьшает размерность данных, представляя их в скрытом пространстве меньшей размерности. Декодер восстанавливает данные обратно в оригинальную размерность.

2. Компиляция и обучение: Модель компилируется с использованием оптимизатора Adam и функции потерь MSE (Mean Squared Error), затем обучается на обычных (нормальных) образцах.

3. Определение порога для обнаружения аномалий: После обучения модели рассчитывается среднеквадратичная ошибка (MSE) между входными данными и их реконструкциями. Затем определяется порог, например, на основе перцентиля ошибок, для обнаружения аномальных образцов.

4. Обнаружение аномалий: Образцы, для которых ошибка восстановления выше заданного порога, считаются аномальными.

Преимущества использования автоэнкодеров для обнаружения аномалий:

— Не требуется разметка данных: Автоэнкодеры могут обучаться без размеченных данных, что упрощает процесс обнаружения аномалий.

— Универсальность: Могут использоваться для различных типов данных, включая структурированные данные, изображения и текст.

— Высокая чувствительность к аномалиям: Автоэнкодеры могут выявлять сложные и неочевидные аномалии, которые могут быть пропущены другими методами.

Этот подход к обнаружению аномалий является эффективным инструментом для финансовых институтов и других отраслей, где важно быстро выявлять подозрительные или необычные события в данных.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «120 практических задач» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я