Маркетинг B2B: часть вторая

Маргарита Васильевна Акулич

Эта книга, по сути, является продолжением книга М. В. Акулич «Маркетинг B2B».В данной книге рассмотрен ряд важнейших и актуальных аспектов, касающихся B2B-маркетинга, таких как «Искусственный интеллект: возможности и применение в продажах и маркетинге в сфере B2B», «B2B-маркетинговые способы продвижения», «Построение долгосрочных B2B-отношений» и др.Сформулированы некоторые полезные рекомендации.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Маркетинг B2B: часть вторая предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

II Искусственный интеллект: возможности и применение в продажах и маркетинге в B2B-сфере

2.1 Достижение конкурентных преимуществ за счет искусственного интеллекта. Исследование поставщика AI-услуг. Возможные применения AI в продажах и дистрибуции

Искусственный интеллект открывает многообещающие возможности для повышения эффективности продаж. Системы искусственного интеллекта берут на себя административные и повторяющиеся задачи, снабжают торговый персонал важной информацией и являются ценным ресурсом для принятия решений в области контроля продаж.

Достижение конкурентных преимуществ за счет искусственного интеллекта

Искусственный интеллект Artificial intelligence (AI) — это гораздо больше, чем просто «шумиха». Продажи могут достичь устойчивых результатов, а компании — конкурентных преимуществ с помощью расширенной аналитики, прогнозного планирования и машинного обучения.

Исследование поставщика AI-услуг

Исследования компании по предоставлению консультационных услуг Tata показывают, что обслуживание клиентов и продажи выигрывают от искусственного интеллекта, особенно в Европе и Северной Америке.

Опрос софтверной компании Qymatix Solutions GmbH был посвящен вопросу о том, как лица, принимающие решения в B2B — продажах, оценивают использование искусственного интеллекта в продажах. Был проведен опрос около 70 управляющих директоров и руководителей отделов средних компаний в сфере оптовой торговли, медицинских технологий, информационных технологий и других секторов из Германии, Австрии и Швейцарии. Основные результаты можно резюмировать следующим образом [2]:

«Системы искусственного интеллекта в настоящее время не очень распространены в компаниях, хотя интерес есть. Только 16% компаний уже используют прогнозную аналитику или планируют внедрить прогнозы продаж на основе AI.

63% опрошенных интересовались этой темой, но еще не успели с ней разобраться.

18% не интересовались использованием AI в продажах, потому что не видели конкретных возможностей его применения в своей компании».

Что касается ожидаемых выгод, респонденты видят наибольшую экономическую выгоду в следующих вещах [2]:

«в повышении эффективности продаж и развития клиентов, включая кросс-продажи и дополнительные продажи (82%);

в планировании и контроле продаж (70%);

в снижении миграционного риска (63%)».

Однако в глазах менеджеров искусственный интеллект не лишен проблем. Некоторые из наиболее часто упоминаемых областей проблем — это [2]:

«Качество данных (45%).

Непонимание и непрозрачность расчетов CI (40%)

Цена (71%)

Интеграция AI в ERP и CRM-системы (65%)».

Принципиально положительная оценка систем искусственного интеллекта в продажах отражена в исследовании Глобального института McKinsey. Согласно этому исследованию [2]:

«88 процентов опрошенных предполагают, что искусственный интеллект сделает их работу легче в течение ближайших 10 лет и можно будет увидеть развитие как прогресс. Только около 6% опасаются, что технологии усложнят их работу или полностью возьмут верх.

Такое отношение пронизывает все должности — от младших до руководителей».

Возможные применения AI в продажах и дистрибуции

Компании, которые разумно используют AI в продажах и создают общую базу данных в сотрудничестве с отделом маркетинга, получают ценную информацию о своих клиентах. Поскольку многие процессы искусственного интеллекта можно автоматизировать, они избавляют отдел продаж от потерь времени после начального этапа. Сэкономленное время, в свою очередь, может быть потрачено на фактическую работу по продажам и маркетингу.

2.2 Динамическое ценообразование. Прогнозная оценка потенциальных клиентов

Динамическое ценообразование

Источник: https://www.instagram.com/uxprice/?hl=ru

Динамическое ценообразование основано не на затратах, а на принятии цен покупателями, а также на спросе и предложении на рынке.

В гибкой корректировке цен на основе рыночного спроса нет ничего нового. Однако онлайн-игроки, такие как Amazon, ставят перед традиционными трейдерами новые задачи, поскольку они могут автоматически изменять свои цены почти в реальном времени с помощью алгоритмов.

Интеллектуальный алгоритм устанавливает цену для отдельных клиентов таким образом, чтобы они были готовы покупать, и чтобы одновременно при этом не страдали продажи.

Помимо демографических характеристик, оптимизация цен с помощью AI также использует в качестве базы данных результаты анализа поведения клиентов, такие как [2]:

«Цены, которые клиент принимал в прошлом. Поведение похожих покупателей. Текущая динамика цен на рынке. Другие факторы, имеющие отношение к успешным транзакциям в прошлом».

Таким образом, преимущества динамического ценообразования заключаются в автоматическом изменении цен в случае изменений рыночной среды, адаптации к фактической готовности клиентов платить и большей эффективности.

Динамическое ценообразование в настоящее время используется в основном в онлайн-секторе. Поскольку у многих средних компаний уже есть интернет-магазин, эта оптимизированная цена больше не является вариантом выбора лишь для крупных игроков. Ее также могут разумно использовать небольшие компании. Однако предварительным условием для этого является высокий уровень точности, доступности и полноты данных, а также подготовка всей компании к динамическому ценообразованию (например, адаптация печатных прайс-листов, маркетинговые меры и т. д.).

Прогнозная оценка потенциальных клиентов

Predictive Lead Scoring использует алгоритмы прогнозирования машинного обучения для анализа существующих клиентов, чтобы определить, насколько вероятно, что потенциальный клиент (= контакт) может быть получен в качестве клиента.

С помощью искусственного интеллекта сотрудники отделов продаж и маркетинга получают глубокие знания о клиенте и увеличивают вероятность успешного заключения сделки, поскольку могут сосредоточиться на перспективных клиентах и целенаправленно обращаться к ним.

Приложение AI оценивает, какое поведение и какие характеристики оказываются интересными лидерам продаж (=квалифицированным руководителям отделов продаж). На основе этих данных затем могут быть идентифицированы те потенциальные клиенты, которые готовы к разговору о продажах и могут быть отправлены в отдел продаж.

Оставшиеся лиды нуждаются в дальнейшей поддержке со стороны отдела маркетинга.

Данные третьих сторон также могут быть включены в анализ.

Одним из впечатляющих примеров является пример Harley-Davidson в Нью-Йорке [2]:

«использование Albert Ki привело к увеличению числа потенциальных клиентов на 2,930%. Технология фокусируется на поведении, которое побуждает потенциальных клиентов связываться с Harley Davidson. Например, AI исследовал рекламу с призывом «Купи!» На этот призыв было получено значительно меньше ответов, чем на призыв «Звоните!». Благодаря изменению всего одного слова количество ответов на размещенные объявления за рассматриваемый период увеличилось на 447%.

Еще одним успешным примером служит пример определения ценных прошлых клиентов. AI отобрал тех людей, которые либо уже приобрели продукт Harley-Davidson, либо добавили его в свою онлайн-корзину, либо были среди 25 процентов посетителей веб-сайта, которые провели там больше всего времени. Эти «ценные прошлые клиенты» использовались в качестве основы для выявления «двойников», которые не были клиентами Harley-Davidson, но в остальном отвечали многим критериям группы и, следовательно, являлись отличными потенциальными клиентами.

Таким образом, прогнозный подсчет потенциальных клиентов делает оценку возможностей продаж не только более эффективной и масштабируемой, но и более объективной, т.е. независимой от субъективных факторов. Подобные системы обычно уже интегрированы в системы автоматизации маркетинга.

Пример Hubspot [2]:

«С помощью искусственного интеллекта компания может с самого начала отсортировать менее перспективные контакты и тем самым сократить продажи данным контактам».

2.3 Прогнозирование. Перекрестные и дополнительные продажи

Прогнозирование

Продукты и услуги продаются лучше всего, когда спрос особенно высок. Когда именно это происходит, можно отследить с помощью AI (по данным).

Прогнозирование может помочь предсказать потенциальные результаты продаж на основе вероятностных моделей, основанных на данных.

Искусственный интеллект и прогнозная аналитика повышают качество прогнозов продаж и прогнозов доходов. Бизнес-решениями можно лучше управлять, цели — определять более четко, а бюджеты и ресурсы — более точно. Хорошие модели прогнозирования одновременно корректируют прогнозы или предоставляют сигналы раннего предупреждения, чтобы избежать чрезмерных отклонений от целей.

Перекрестные и дополнительные продажи

Алгоритмы могут значительно улучшить основу для продажи дополнительного продукта или услуги существующему клиенту.

С помощью искусственного интеллекта может быть проведен детальный анализ корзины покупок на основе CRM и ERP. Данные о продажах могут быть получены до перекрестных продаж, чтобы рассчитать и спрогнозировать вероятность успешных перекрестных продаж. У менеджеров по продажам есть прочная основа для принятия решения о том, когда именно стоит предложить покупателю дополнительный продукт или дополнительное предложение.

Платформы AI, такие, например, как Jetlore, способны анализировать и интерпретировать сотни страниц интернет-магазина, чтобы понять предпочтения потребителей.

Базовый AI использует данные клиентов для создания таких рейтингов, в рамках которых клиенты могут быть особенно заинтересованы в определенных продуктах или процессах. В дополнение к множеству других функций, этот AI позволяет эффективно собирать данные и выдает заявления о том, какие именно потенциальные клиенты подходят для будущих проектов.

2.4 Удовлетворенность клиентов. Заключение: искусственный интеллект в B2B-продажах и в B2B-маркетинге

Удовлетворенность клиентов

Самообучающиеся системы искусственного интеллекта способны улучшить качество обслуживания клиентов и, следовательно, их удовлетворенность на основе существующих данных, а также обучаться с каждой новой записью данных.

AI в обслуживании клиентов можно использовать по-разному. В большинстве случаев решения AI поддерживают менеджера по работе с клиентами, например:

Автоматизированное взаимодействие с покупателем в виде помощников по покупкам, которые помогают покупателю найти желаемый товар.

Чат-боты, которые заботятся о жалобах клиентов

Индивидуальный подход к клиентам с помощью систем искусственного интеллекта. Выявление мошенничества с использованием AI — решений. Более быстрое реагирование и обработка запросов клиентов за счет поддержки систем искусственного интеллекта. Управление клиентским опытом с точки зрения многоканальности.

Согласно изучение данным Capgemini Digital Transformation Institute, [2]:

«75 процентов компаний, использующих AI и машинное обучение, повысили удовлетворенность клиентов более чем на 10 процентов. И это также означает, что меньше клиентов может мигрировать и что можно привлечь новых клиентов».

Таким образом, использование технологий искусственного интеллекта в обслуживании клиентов также увеличивает продажи и оборот.

Заключение: искусственный интеллект в B2B-продажах и в B2B-маркетинге

Успешное внедрение искусственного интеллекта в продажи и в B2B-маркетинг способны обеспечить значительное конкурентное преимущество.

С помощью алгоритмов искусственного интеллекта отделы продаж и маркетинга имеют возможность углубить свои знания о клиентах и повысить вероятность заключения сделки, поскольку они могут сосредоточиться на перспективных клиентах и работать с ними целенаправленно и индивидуально.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Маркетинг B2B: часть вторая предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я